skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mauro Junior, Davino"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Security of Internet of Things (IoT) devices is a well-known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications. 
    more » « less
  2. Internet of Things is growing rapidly, with many connected devices now available to consumers. With this growth, the IoT apps that manage the devices from smartphones raise significant security concerns. Typically, these apps are secured via sensitive credentials such as email and password that need to be validated through specific servers, thus requiring permissions to access the Internet. Unfortunately, even when developers of these apps are well-intentioned, such apps can be non-trivial to secure so as to guarantee that user’s credentials do not leak to unauthorized servers on the Internet. For example, if the app relies on third-party libraries, as many do, those libraries can potentially capture and leak sensitive credentials. Bugs in the applications can also result in exploitable vulnerabilities that leak credentials. This paper presents our work in-progress on a prototype that enables developers to control how information flows within the app from sensitive UI data to specific servers. We extend FlowFence to enforce fine-grained information flow policies on sensitive UI data. A version of the paper is also available at: https://arxiv.org/abs/1810.13367. The final version is available at: https://portaldeconteudo.sbc.org.br/index.php/sbseg/article/view/4263 
    more » « less